The Agent Playbook

Recipes for autonomous, reliable Al

Chapter 1: Introduction to Agents

by Anoop Maurya

Chapter 1: Introduction to Agents

Chapter 1: Introduction to Agents — What & Why

Why Everyone's Talking About Al Agents (And Why You Should Care)

Something wild is happening in Al land. Every week, there's a new "did you see what it just did?!" moment. GPT-
4 isn't just chatting anymore—it's coding entire applications. Claude is writing, debugging, and deploying
software. Gemini is booking your dinner reservations. Even the open-source models like Llama 3.2 are running

businesses while you sleep.
These aren't your typical "smart" chatbots. They're thinking systems.

Picture this: A developer drops a single message—"Make this app production-ready"—and walks away. Hours
later, they return to find their Al agent has refactored the database, optimized the API, set up monitoring, written
tests, and deployed everything with detailed documentation. All while making hundreds of intelligent decisions

and adapting when things didn't go as planned.
That's not automation. That's digital intelligence at work.

Here's the thing: We're not just watching cool demos anymore. Financial firms are using these agents to trade
millions in real-time. Healthcare companies are deploying them to analyze medical research. E-commerce

businesses are letting them handle everything from inventory to customer support in 20+ languages.

The companies figuring this out first? They're gaining superpowers. The ones waiting? Well, they're about to get

lapped by competitors who can think, plan, and execute at Al speed.

But here's the plot twist—most people still think agents are "just fancy ChatGPT." The gap between what's
actually possible and what people understand is massive. New frameworks are dropping monthly (Langgraph,

CrewAl, Autogen), each promising to change everything.

So why read this chapter? Because agents aren't the future anymore—they're the present. And understanding
how they think, plan, and act isn't just useful knowledge. It's becoming essential survival skills for anyone building

software in 2025.

Ready to see how deep this rabbit hole goes? Let's dive in.

The Agent Playbook - Recipes for autonomous, reliable AT —2— Anoop Maurya

Chapter 1: Introduction to Agents

What Is an Agent?

Classic Definition

In traditional Al literature, an agent is any system that perceives its environment through sensors, maintains some
internal state or knowledge about the world, and acts upon that environment through actuators to achieve specific
goals (Russell & Norvig, "Artificial Intelligence: A Modern Approach"”, 4th ed., 2020). The agent operates within

an environment that provides percepts (observations or inputs) and receives actions as outputs.

This definition emphasizes the core loop: sense — think — act. A thermostat is a simple agent—it perceives
temperature, compares it to a target, and triggers heating or cooling actions. A chess program perceives board

positions, evaluates possible moves, and executes the move it judges best.

Modern LLM-Based Definition
In the context of large language models and modern software systems, we can be more specific and practical:

Simple Formula:
Agent = AI Model + Memory + Tools + Continuous Loop
Complete Formula:

Agent = AI Model(Understanding + Generation) + Planning + Tools + (Decision
Making + Loops)

An Al agent is a software component that:

1. Perceives inputs from users, APIs, databases, or other systems

2. Plans multi-step actions to achieve goals, often using natural language reasoning

3. Maintains state and memory across interactions and time

4. Invokes tools and external systems (APIs, code execution, databases) to gather information or take actions
5. Adapts and reflects on its performance, potentially correcting course when plans fail

6. Operates in loops rather than single-shot responses, continuing until goals are met

The Agent Playbook - Recipes for autonomous, reliable AT —3— Anoop Maurya

Chapter 1: Introduction to Agents

Key Terms Glossary

L Essential Agent Vocabulary

o Percept: Any input the agent receives (user messages, API responses, sensor data)

o Action: Any output or operation the agent performs (tool calls, responses, file modifications)

o Environment: The context in which the agent operates (chat interface, system APIs, physical world)
o Goal/Objective: The desired outcome the agent is trying to achieve

o Autonomy: The degree to which the agent can operate without human intervention

o Policy: The decision-making strategy that maps percepts to actions

e Actuator: The mechanism through which the agent affects its environment

e Sensor: The mechanism through which the agent perceives its environment

Agent vs. Other Systems
To clarify what we mean by "agent," here's how they differ from other common systems:

e Agent vs. Chatbot: A chatbot responds to individual messages; an agent maintains goals across multiple

turns and can initiate actions independently

e Agent vs. Single Prompt: A single LLM prompt generates one response; an agent can chain multiple

reasoning steps and tool calls

e Agent vs. Workflow Script: A workflow follows predefined steps; an agent can adapt its plan based on

intermediate results and changing conditions

Chatbot vs Agent Flow:

Chatbot Pattern:
User Question — Single Response — End
N
"What's the weather?" - "It's sunny, 72°F" - [Conversation ends]

Agent Pattern:
User Goal - Plan - Action - Check - Continue/Adapt - Goal Achieved
N
"Plan my day" - Break into steps - Check calendar - Book meetings -
Check traffic - Adjust timing - Send schedule

The Agent Playbook - Recipes for autonomous, reliable AT — 4 — Anoop Maurya

Chapter 1: Introduction to Agents

Core Properties & Motivations — Why Agents?

Modern Al agents provide several key advantages over single-shot LLM usage or traditional automation scripts.
Understanding these advantages helps explain why agent architectures are becoming central to LLM-powered

applications.

Multi-Step Planning and Decomposition

Traditional chatbots handle one question at a time. Agents can break complex requests into sequences of smaller,
manageable tasks. For example, "analyze our customer churn" becomes: extract data — clean and validate — run

statistical analysis — generate visualizations — summarize findings — recommend actions.

This decomposition allows agents to handle requests that would overwhelm a single prompt and creates natural

checkpoints for verification and course correction.

Tool Invocation and External Integration

While a pure language model can only generate text, agents can:

Call APIs to retrieve real-time information (weather, stock prices, database queries)

Execute code to perform calculations or data processing

Read and write files, interact with databases

Control external systems (send emails, create calendar events, deploy software)
This bridges the gap between language understanding and real-world action.

Agent Ecosystem Flow:

AI Agent (Brain)

N N N
i APIs B Databases Tools
(Weather, (User data, (Calculator,
News, History, Code runner,
Maps) Preferences) Email sender)
v v v
Real-time — Agent decides what to use — Takes action
information based on the task in real world

The Agent Playbook - Recipes for autonomous, reliable AT —5— Anoop Maurya

Chapter 1: Introduction to Agents

Memory and Context Persistence
Agents maintain state between interactions, allowing them to:

e Remember previous conversations and build on prior context
e Track long-running tasks across multiple sessions
e Learn user preferences and adapt behavior over time

e Maintain awareness of ongoing projects and goals

For instance, a code review agent can remember the coding standards discussed in previous reviews and apply

them consistently to new pull requests.

Self-Checking, Reflection, and Recovery
Sophisticated agents can evaluate their own work:

e Check API responses for errors before proceeding
e Validate outputs against expected formats or constraints
e Recognize when a plan isn't working and try alternative approaches

e Ask clarifying questions when faced with ambiguous instructions

This self-reflection capability makes agents more robust and reliable than linear automation scripts.

Coordination and Multi-Agent Orchestration
Agents can work together, with different agents specializing in different domains:

e A data analysis agent collaborating with a visualization agent
e Multiple agents dividing a complex task (research, writing, fact-checking)

e Agent-to-agent delegation and result compilation

When NOT to Use an Agent
Agents aren't always the right solution. Consider simpler alternatives when:

e Single, straightforward tasks can be handled by a direct API call or simple prompt
e Latency is critical and you can't afford the overhead of planning and reflection

e Cost matters and the problem doesn't justify the additional LLM calls involved in agent reasoning

The Agent Playbook - Recipes for autonomous, reliable AT —6— Anoop Maurya

Chapter 1: Introduction to Agents

e Deterministic behavior is required and the adaptability of agents introduces unwanted variability

¢ Simple workflows already exist and work reliably without the complexity of agentic behavior

Short History & Conceptual Roots

The concept of agents has deep roots in computer science, but the recent explosion of interest stems from the

convergence of several technological advances.

Classical Agents and Robotics (1950s-1990s)

Early Al research focused on autonomous systems that could navigate and manipulate physical environments.
These agents were often rule-based, with explicit programming for perception-action loops. Notable examples

include:

e Shakey the Robot (1960s-70s): One of the first mobile robots to combine perception, planning, and action
(Nilsson, "Shakey the Robot", Al Center Technical Note 323, 1984)

e Expert systems (1970s-80s): Knowledge-based agents for specialized domains like medical diagnosis

e Reactive architectures (1980s-90s): Behavior-based robotics that emphasized fast, adaptive responses over

complex planning (Brooks, "Elephants Don't Play Chess", Robotics and Autonomous Systems, 1990)

Software Agents (1990s-2000s)
As computing moved online, researchers began developing software agents for tasks like:

e Information retrieval and web crawling
e Automated trading and auction bidding
e Personal assistants and email filtering
e Multi-agent systems for distributed problem solving
These systems established many of the architectural patterns we still use today: deliberation vs. reaction,

centralized vs. distributed control, and learning vs. fixed behavior (Wooldridge, "An Introduction to MultiAgent
Systems", 2009).

LLM-Based Agents and Tool Use (2020s-Present)

The emergence of large language models with strong reasoning capabilities created new possibilities for agent

architectures:

The Agent Playbook - Recipes for autonomous, reliable AT —7 — Anoop Maurya

Chapter 1: Introduction to Agents

e Natural language planning: LLMs can break down complex goals into step-by-step plans using natural

language reasoning

e Tool calling: Modern LLMs can learn to invoke external functions and APIs based on their descriptions
(Schick et al., "Toolformer: Language Models Can Teach Themselves to Use Tools", arXiv:2302.04761, 2023)

e Chain-of-thought reasoning: LLMs can explicitly show their reasoning process, making agent behavior
more interpretable (Wei et al., "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models",
NeurlIPS 2022)

e Few-shot adaptation: LLMs can quickly adapt to new tools and environments with minimal examples

The conceptual continuity remains: agents still perceive, decide, and act. But LLMs provide new affordances for

flexible reasoning, natural language interfaces, and rapid adaptation to new domains.

Taxonomy — Agent Types Made Simple

Instead of overwhelming you with academic dimensions, let's look at agent types the way you'd actually encounter

them in practice. Think of this as "agent personality types" rather than technical specifications.

The Three Core Agent Personalities

@ The Reactive Responder - What it does: Answers questions quickly, handles single requests - Personality:
"Ask me anything, I'll give you a fast answer!" - Example: Customer service chatbot, simple Q&A assistant - Best

for: Quick information retrieval, simple automation - Limitation: Can't handle complex multi-step problems

@) The Thoughtful Planner - What it does: Takes time to think, breaks down complex problems, follows
through on plans - Personality: "Let me think about this step by step..." - Example: Research assistant, project
planning agent - Best for: Complex analysis, multi-step workflows, long-term goals - Limitation: Slower, more

expensive, can overthink simple tasks

28 The Team Coordinator - What it does: Manages multiple specialized agents working together - Personality:
"I'll delegate this to the right experts on my team" - Example: Writing team (researcher + writer + editor agents) -
Best for: Complex projects requiring different expertise - Limitation: Coordination overhead, potential conflicts

between agents

Memory Styles: Goldfish vs. Elephant

@ Stateless (Goldfish Memory) - Forgets everything between conversations - Fast and simple, no storage
complexity - Good for: Public Q&A, simple calculations - Example: "What's the weather today?" (asks, answers,

forgets)

The Agent Playbook - Recipes for autonomous, reliable AT — 8 — Anoop Maurya

Chapter 1: Introduction to Agents

&0 Stateful (Elephant Memory) - Remembers conversations, preferences, context - Personalized but more

complex to build - Good for: Personal assistants, ongoing projects - Example: "Continue working on that report

we discussed last week"

Tool Access: Thinker vs. Doer

") Pure Thinker (No Tools) - Only generates text responses - Safe, predictable, contained - Good for: Writing,

analysis, brainstorming - Example: Essay writing assistant

« Active Doer (Full Tools) - Can call APIs, run code, access databases, send emails - Powerful but requires
careful security design - Good for: Automation, data analysis, system integration - Example: Agent that books

meetings by checking calendars and sending invites

Agent Personality Types Flow:

® REACTIVE RESPONDER
Input - Quick Processing — Immediate Answer
"What's 2+2?" - [Calculates] - "4"

€) THOUGHTFUL PLANNER

Input - Analysis — Plan - Step 1 - Step 2 - Step 3 - Result

"Research AI trends" - [Thinks] - [Search papers] - [Analyze] - [Summarize] -
[Report]

88 TEAM COORDINATOR

Input - Delegate - Agent A + Agent B + Agent C - Combine - Final Output
"Write article" - [Assigns] - [Research] + [Write] + [Edit] - [Merge] - [Articlel

This simplified view helps you choose the right agent type for your specific needs without getting lost in academic
complexity. Most real agents combine aspects of multiple types—you might have a thoughtful planner with

elephant memory and full tool access.

Core Agent Architecture — Building Blocks

While agent implementations vary widely, most share a common set of architectural components. Understanding

these building blocks helps you design agents systematically and debug them when they misbehave.

Essential Components

Perception/Input Layer: Handles incoming information from users, APIs, sensors, or other systems. This layer

often includes parsing, validation, and normalization of different input formats.

The Agent Playbook - Recipes for autonomous, reliable AT —9— Anoop Maurya

Chapter 1: Introduction to Agents

Memory/Knowledge Store: Maintains both short-term context (current conversation, active tasks) and long-
term knowledge (user preferences, domain facts, learned patterns). May include vector databases, traditional

databases, or specialized memory architectures.

Planner/Policy/Decision Module: The "brain" of the agent that decides what to do next. This might be an LLM

prompted for planning, a rule-based system, or a hybrid approach that combines reasoning with learned policies.

Action/Execution Layer: Translates decisions into concrete actions. This includes tool invocation, API calls, code

execution, and response generation. Often includes safety checks and action validation.

Reflection/Error Detection: Monitors the agent's performance and detects when things go wrong. This might
involve checking API response codes, validating outputs against expectations, or using separate models to critique

the agent's reasoning.

Learning/Adaptation Module: Updates the agent's behavior based on experience. This could be as simple as

storing successful strategies or as complex as fine-tuning model weights based on feedback.

Communication/Interface: Manages interactions with users and other agents. Handles message formatting,

conversation flow, and coordination protocols for multi-agent systems.

Agent Architecture Diagram

werative A9Qnt Cycy
B S s P
f . ™ [\
1\8 y -~ Agent Loop e (2
- "' ~ o ~
’ “ -
(Plrjos:mrplt?gil) .’ LLM (Language Model) s, il Respanse
’ \|
" update history “
[update 1
: history - LLM 1
. choose & call tool '
A 38 core N
' G T (s, PP e,
A Memory ‘ % Tools)
\ | (Chat History & Facts) (Search, APIS Fece) | ¢
L s J

\ =
|‘ \% ool output / observation "
“\ §MRnl ."
- % 4

Ss No
- -

- -

Pl Condition: _ -~

7 Goal Not Met?

Simple Agent Loop in Python

Here's a pseudo-Python implementation that illustrates the basic agent loop:

The Agent Playbook - Recipes for autonomous, reliable AT — 10 — Anoop Maurya

Chapter 1: Introduction to Agents

class SimpleAgent:
def __init__(self):
self.memory = {}
self.tools = {"search": web_search, "calculate": calculator}

def run(self, user_input):
Perception: Parse and understand input
parsed_input = self.perceive(user_input)

Planning: Decide what to do
plan = self.plan(parsed_input, self.memory)

Action: Execute the plan
results = []
for step in plan.steps:
try:
result = self.execute(step)
results.append(result)

Reflection: Check if we're on track
if self.should_replan(result, step):
plan = self.replan(results, remaining_steps)

except Exception as e:
Error recovery
plan = self.handle_error(e, step, results)

Update memory with what we learned
self.memory.update({
"last_request": user_input,
"successful_strategy": plan,
"results": results

i)

return self.format_response(results)

def execute(self, step):
if step.tool in self.tools:
return self.tools[step.tool] (step.parameters)
else:
return self.generate_response(step.content)

This simplified loop demonstrates the key principles: perceive inputs, plan actions, execute with reflection, and

update memory for future use.

Agent Loop Flow:

The Agent Playbook - Recipes for autonomous, reliable AT — 11— Anoop Maurya

Chapter 1: Introduction to Agents

The Agent Thinking Cycle:

1. ® PERCEPTION
"User wants me to book a flight"
N
2. €3 PLANNING
"T need: dates, destination, budget, preferences"
N
3. 4 ACTION
"Ask for missing info - Search flights - Compare prices"
N
4. @ REFLECTION
"Did I find good options? Any errors? User satisfied?"
N
5. B MEMORY UPDATE
"Remember user prefers aisle seats, budget airlines"
N
[Loop back to PERCEPTION for next request]

Agent vs. Non-Agent Systems

Understanding what is not an agent helps clarify the boundaries and prevents over-engineering simple problems.

What Is NOT an Agent

One-shot LLM prompts: A single call to GPT-4 with a question and response. No planning, no memory, no tool

use. Example: "Summarize this document" — summary response.

Simple webhook-driven scripts: Automated responses to events that follow predetermined paths without

decision-making. Example: "When new email arrives, save attachment to folder."

Static RAG retrieval-only pipelines: Systems that retrieve relevant documents and return them without
synthesis, planning, or adaptation. Example: Search interface that returns matching documents from a knowledge

base.

Traditional rule-based automation: If-then logic that executes predetermined sequences without learning or

adaptation. Example: "If temperature > 75°F, turn on air conditioning."

Borderline Cases

Some systems exhibit agent-like properties but fall short of full autonomy:

The Agent Playbook - Recipes for autonomous, reliable AT — 12 — Anoop Maurya

Chapter 1: Introduction to Agents

Chained prompts without planning: Multiple LLM calls in sequence (prompt 1 — response 1 — prompt 2 —
response 2) but without explicit planning or adaptation. Becomes agentic when: the chain can modify its own

sequence based on intermediate results.

Zapier/IFTTT workflows: Automated sequences triggered by events, with some conditional logic. Becomes agentic

when: workflows can branch, adapt, or invoke multiple tools based on runtime decisions.

Sophisticated RAG with synthesis: Retrieval systems that not only find relevant information but combine it

intelligently. Becomes agentic when: the system can plan what information to retrieve based on partial results.

Interactive chatbots with memory: Conversational systems that remember context and user preferences. Becomes

agentic when: the chatbot can initiate actions or plan multi-turn conversations toward specific goals.

Criteria for Agent Territory
A system crosses into agent territory when it demonstrates:

1. Autonomy: Can make decisions without constant human guidance

2. Goal-directed behavior: Works toward specific objectives across multiple interactions

3. Tool invocation: Can call external systems or execute code to gather information or take actions
4. Persistent state: Maintains memory and context that influences future decisions

5. Adaptation: Can modify its strategy based on results and changing conditions

The line isn't always clear, and that's okay. Many useful systems exist in the borderland between simple

automation and full agency.

Risks, Challenges & Ethical Considerations

Agent systems introduce new categories of risks and challenges that developers must consider from the design

phase onward.

Practical Risks

Hallucinations and Incorrect Actions: LLM-based agents can confidently execute wrong actions based on
hallucinated information. Mitigation: Implement verification steps, human approval for high-stakes actions, and

confidence scoring for agent decisions.

Unpredictable Behavior: Agents may take unexpected paths to goals, especially with stochastic reasoning.

Mitigation: Extensive testing, sandbox environments, and clear constraint specification in agent policies.

The Agent Playbook - Recipes for autonomous, reliable AT — 13 — Anoop Maurya

Chapter 1: Introduction to Agents
Cost and Latency: Multi-step reasoning and tool calls can become expensive and slow. Mitigation: Implement cost
monitoring, timeout mechanisms, and optimization for common patterns.

Debugging Difficulty: Complex agent behavior can be hard to trace and debug when things go wrong. Mitigation:

Comprehensive logging, step-by-step execution traces, and visualization tools for agent decision-making.

Security Vulnerabilities: Agents with tool access can be manipulated to perform unauthorized actions. Mitigation:

Principle of least privilege, input sanitization, and careful tool permission design.

Data Leakage: Agents may inadvertently expose sensitive information through tool calls or memory storage.

Mitigation: Data classification, access controls, and audit trails for all agent actions.

Broader Risks

Alignment Problems: Agents may optimize for stated goals in ways that violate implicit human values.

Consideration: Build in value alignment checks and human oversight for goal interpretation.

Emergent Behaviors: Multi-agent systems may exhibit unexpected collective behaviors. Consideration: Start with

simple single-agent systems and add complexity gradually with monitoring.

User Trust and Transparency: Users may over-trust or under-trust agent capabilities. Consideration: Clear

communication of agent limitations and confidence levels.

Multi-Agent Coordination Failures: Agents working together may create infinite loops, conflicts, or resource

contention. Consideration: Implement coordination protocols, resource limits, and circuit breakers.

Caution: Start Small and Monitor Closely

A, ., Key Risk Mitigation Strategy
Begin with narrow, low-risk domains and gradually expand agent capabilities. Implement comprehensive
monitoring and human oversight systems before deploying agents in production environments. The flexibility that

makes agents powerful also makes them potentially unpredictable.

Risk Mitigation Flow (Start Small — Scale Up):

The Agent Playbook - Recipes for autonomous, reliable AT — 14 — Anoop Maurya

Chapter 1: Introduction to Agents

Level 1: SIMPLE AUTOMATION

- Single-task bots (FAQ, calculations)
|- Ssafety: Easy to test, predictable
L Risk: Low

Level 2: BASIC AGENTS
|~ Memory + simple tools (email, calendar)

|- Ssafety: Human approval, limited scope
L Risk: Medium

Level 3: ADVANCED AGENTS

|~ Complex planning + multiple tools

|~ Safety: Monitoring, rollback, constraints

L Risk: High

Level 4: MULTI-AGENT SYSTEMS

|- Teams of agents working together

|~ Safety: Coordination protocols, circuit breakers

L Risk: Very High

A, Rule: Master each level before moving up!

Key Takeaways
Here are the essential concepts to remember from this chapter:

+ Agents are software systems that perceive, plan, act, and adapt—going beyond single-shot responses to handle

complex, multi-step tasks

+ Simple formula: Agent = LLM + Memory + Tools + While Loop—this captures the essence of modern agent

architecture
+ The core agent loop is: perceive — plan — act — reflect — update memory, with each step informing the next

+ Agents excel at decomposing complex problems, maintaining context over time, invoking external tools, and

adapting when plans fail

« Three main personalities: Reactive Responders (fast answers), Thoughtful Planners (complex reasoning), Team

Coordinators (multi-agent orchestration)

+ Essential components include perception, memory, planning, execution, reflection, learning, and

communication modules

The Agent Playbook - Recipes for autonomous, reliable AT — 15— Anoop Maurya

Chapter 1: Introduction to Agents

» Not everything is an agent—simple automation, single prompts, and static workflows serve many use cases

better

+ Risks include hallucinations, unpredictable behavior, security vulnerabilities, and alignment problems—start

small and monitor closely

Exercises, Prompts & Further Reading

Practical Exercises

1. Meeting Scheduler Agent Design: Sketch the architecture for an agent that schedules meetings by checking
calendars, finding available times, and sending invites. Identify the key components (perception, memory,

tools, etc.) and describe one potential failure mode with a mitigation strategy.

2. RAG-to-Agent Conversion: Take a simple RAG system that answers questions by retrieving relevant
documents. List three specific changes you would make to convert it into a stateful agent that can handle

follow-up questions and maintain conversation context.

3. Agent Loop Implementation: Implement the pseudo-Python agent loop from Section 6 and simulate a
simple "to-do list" planning agent. The agent should be able to add tasks, mark them complete, and suggest

which task to work on next based on priorities (no LLM required—use simple heuristics).

4. Privacy Risk Assessment: Consider an agent designed to read and summarize emails for busy executives.
Identify three specific privacy concerns and propose concrete technical mitigations for each (e.g., data

encryption, access controls, audit logging).

5. Multi-Agent Coordination: Design a system where three agents collaborate to write a research report: one
for gathering information, one for writing, and one for fact-checking. Sketch the communication protocol

and identify two potential coordination failure modes.

6. Agent vs. Non-Agent Classification: For each of these systems, determine whether it qualifies as an agent
and explain your reasoning: (a) A Slack bot that responds to @mentions with canned responses, (b) A system
that monitors server logs and automatically scales resources, (c) A chatbot that remembers user preferences
and can book restaurant reservations.

Further Reading

For deeper exploration of agent concepts and implementations:

Foundational Texts: - Russell, S. & Norvig, P. "Artificial Intelligence: A Modern Approach” (4th ed., 2020) -

Classic treatment of agent architectures and reasoning - Shoham, Y. & Leyton-Brown, K. "Multi-Agent Systems:

The Agent Playbook - Recipes for autonomous, reliable AT — 16 — Anoop Maurya

Chapter 1: Introduction to Agents

Algorithmic, Game-Theoretic, and Logical Foundations" (2009) - Comprehensive theoretical foundation

Recent Surveys: - Xi, Z. et al. "The Rise and Potential of Large Language Model Based Agents: A Survey"
(arXiv:2309.07864, 2023) - Overview of modern LLM-based agent architectures - Schick, T. et al. "Toolformer:
Language Models Can Teach Themselves to Use Tools" (arXiv:2302.04761, 2023) - Deep dive into tool use and

external integration patterns

Ethical and Safety Considerations: - Hendrycks, D. et al. "Overview of Catastrophic Al Risks" (arXiv:2306.12001,
2023) - AI Safety considerations for agent systems - Bai, Y. et al. "Constitutional Al: Harmlessness from Al

Feedback" (arXiv:2212.08073, 2022) - Alignment techniques applicable to agents

Historical Context: - Nilsson, N. "Shakey the Robot" (Al Center Technical Note 323, 1984) - Early agent systems -
Brooks, R. "Elephants Don't Play Chess" (Robotics and Autonomous Systems, 1990) - Reactive architectures -
Wooldridge, M. "An Introduction to MultiAgent Systems" (2009) - Software agent foundations

This chapter provides the conceptual foundation for understanding agents. The following chapters will dive deeper into

implementation patterns, specific agent types, popular frameworks, and practical deployment strategies.

The Agent Playbook - Recipes for autonomous, reliable AT — 17 — Anoop Maurya

